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ABSTRACT

Denial and deception (D&D) techniques that exploit misinformation and an adversary’s cognitive biases have
long been a part of hybrid warfare. Such tactics cast uncertainty and doubt to intelligence, surveillance, and
reconnaissance (ISR) products traditionally produced by a human analyst. In a future battlespace dominated by
the proliferation of artificial intelligence (Al), the amount of algorithm-generated ISR products is likely to
increase. Therefore, D&D tactics will be increasingly motivated by the need to subvert not human, but machine
reasoning. Developments in adversarial machine learning (AML), the study of deceiving Al, have significant
implications for what that state of practice might be in a future hybrid battlespace. This paper reviews key
distinctions between AML techniques and what assumptions they make about an adversary’s knowledge of and
access to an operational Al. We then summarize several lines of our team’s recent AML research that relate to
hybrid warfare: physical adversarial attacks on imaging systems, data poisoning attacks, and the relevance of
AML to the design of robust Al systems.

1.0 INTRODUCTION

Hybrid warfare refers to the use of subversive, non-military instruments to advance a nation state’s interests,
particularly techniques that have been employed by Russia in recent years to capture territory and influence the
politics and policies of countries without resorting to overt, conventional military action [1]. Employed hybrid
tactics have included cyberattacks, mobilizing proxy groups to action, exerting economic influence, and other
clandestine measures. Because hybrid warfare exists in the “grey zone” between conventional military conflict
and civilian life, tactics have employed denial and deception (D&D) to confuse, deter, or otherwise affect
desirable behaviour by exploiting a population or opposing force by exploiting its cognitive biases. The
historical use of D&D tactics on the conventional battlefield is well-documented [3]. Effective D&D techniques
have succeeded by casting doubt on military intelligence, surveillance, and reconnaissance (ISR) products that
rely upon the analysis of a human expert. This is not necessarily the case in a hybrid military operation, in which
D&D may seek to influence civilian perception as well. Furthermore, with the emergence of artificial
intelligence (Al) as a priority for national military investment strategies (e.g. [4] and [5]) and increasing adoption
by the commercial information technology sector [6], Al will likely be ubiquitous in the future “grey zone.”
Therefore, we must consider the possible D&D threats in a future hybrid battlespace dominated by the use of Al.

Current Al capabilities have been made possible by advances in machine learning, particularly in the sub-field
of deep learning, over the past 10 years. Machine learning (ML) concerns the problem of mapping a system’s
input to a predicted outcome, e.g. mapping an image of a vehicle to a class label. Typically, this is achieved
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through statistical pattern recognition in large data sets. Deep learning specifically concerns the use of multilayer
neural networks, highly nonlinear regression models with millions of free parameters, as a statistical model for
pattern recognition. While deep networks have performed superior to humans on a variety of tasks (most
famously image classification [7]), after observations of them being easily fooled were made in works such as
[8] and [9], the field of adversarial machine learning (AML) emerged as an active area of research. Numerous
authors have pointed out that errors made by ML algorithms could have grave consequences in the civilian
domain [10]-[15]. We also believe that a similar concern must be raised pertaining to the vulnerability of
military Al systems, for both the conventional battlefield as well as the hybrid battlespace.

The remainder of this paper is organized as follows: Section 2.0 will provide further background on AML, and
where we believe the current gaps exist in addressing its relevance to hybrid military operations. In Section 3.0,
we describe three research efforts currently underway at the Johns Hopkins University Applied Physics
Laboratory (JHU/APL) to address these knowledge gaps. Finally, we make concluding remarks and summarize
our findings to date in Section 4.0.

2.0 ADVERSARIAL MACHINE LEARNING AND HYBRID WARFARE
2.1 Adversarial Machine Learning Background

Figure 1 illustrates a notional example of an adversarial attack on a deep network, specifically one designed for
image classification. Training a deep network to classify an image as one of thousands of categories of objects is
now a trivial task. However, one could design a small perturbation to the image’s pixels that cause the same
network to classify the perturbed image incorrectly [8] [9]. For example, one could mix an image of a cat with a
specially designed pattern such that the network classifies original image as “cat” and the perturbed image as
“ostrich.” Because this is an undesirable behaviour in the network, the community refers to the act of perturbing
the image as an attack, and the perturbed image itself as an adversarial example (AE) [10].
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Figure 1. Notional example of an adversarial example used to cause a deep learning model to
recognize an image of a cat as an "ostrich." Image originally published in [11].
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Given the apparent threat of AEs, the community has investigated potential ways to defend against such attacks
by improving the robustness of deep networks. In 2017, the Advances in Neural Information Processing Systems
(NeurIPS) conference held a competition as a first step toward defining best practices for ensuring adversarial
robustness [12]. In that competition, researchers submitted either attacks (algorithms that perturbed images to
create an AE) or defences (networks trained to be resistant to AEs). Attacks were developed without any prior
knowledge of the potential defences, which is referred to as a black-box attack scenario. The attacks were
presented to the defences, and the classification accuracy (and its inverse, the attack success rate) were
evaluated. The winning attack developed strong AEs by optimizing the perturbation for attacking ensemble of
different network designs [13]. The winning defence was developed by the same team, and was successful at
mitigating the effects of AEs through a neural network based de-noising filter that was implemented as a pre-
processing step ahead of the classifier. The second-place defence implemented special layers in their network
that randomly resized and padded the input image, and also trained their network on AEs so that it would learn
how to classify them correctly [14].

Several insights were gained from the 2017 NeurlPS competition that formed the basis of research in AML. It
was observed that successful black-box attacks could be learned by attempting to fool multiple plausible deep
learning classifiers at once. Conversely, the competition highlighted the importance of pre-processing (e.g. the
use of de-noising filters) and adversarial training (including AEs in the network’s training set) as best practices
for “hardening” deep networks to AEs. While these contributions were a critical first step for AML research,
several knowledge gaps must be address in order to fully understand the implications of this field for hybrid
warfare. We discuss some of those gaps in the following subsection.

2.2 Gaps Pertaining to Hybrid Operations

One knowledge gap in AML research is the likelihood of an adversary producing successful attacks through
physical manipulations, rather than digital ones. In order to produce the classic AE shown in Figure 1, the
attacker must have digital access to the target model’s input layer, e.g. images loaded from a database, camera,
or video feed. While it is plausible that this could be possible via a cyberattack or malware insertion, the physical
world is where an attacker may find the most opportunity to affect what the deep network sees. Physical-domain
AML is currently an active research area, and recent works have demonstrated some successful physical attacks
by placing innocuous stickers on street signs [15], designing patches with special patterns printed on them [16]
(see Figure 2), or 3-D printing objects [17] with an adversarial pattern.
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Figure 2. Image of a banana correctly being classified by a deep network (top) and misclassified as a
“toaster” when an adversarial patch is placed next to it (bottom). Image originally published in [16].

A shortcoming of the research published to date is that effectiveness of attacks with respect to environmental and
geometric changes is not being studied extensively. Therefore, current physical AML approaches are not yet
likely to be effective in the fog of war, and especially not in hybrid war where the range of possible observing
conditions is very broadly defined. In Section 3.1, we discuss research at JHUAPL that is addressing this gap by
studying under what conditions we can expect successful physical patch attacks, and whether one could expect
to encounter attacks designed to be more effective under a wider variety of viewing conditions.

Another shortcoming of physical adversarial patterns, such as the patch attack shown in Figure 2, is that they
tend to be very conspicuous to the human eye. This blatant overtness would not make them a realistic hybrid
operations tactic, since a human could remove the patch after noticing it, or an algorithm developer could
implement logic to ignore the pattern after it was identified. To address the gap of knowing whether less-overt
patch attacks are a credible threat to Al systems, we are studying the effectiveness of semi-transparent patch
attacks. The results of this research is also discussed in Section 3.1.

Furthermore, there is a gap in our understanding of what vulnerabilities might exist to adversaries with some a
priori knowledge of the target network’s training pipeline. Producing an AE like in Figure 1 requires the attacker
to know the target network’s design (e.g. how many weights per layer) and the values of the weights. The
community refers to this scenario as a white-box attack and represents the easiest AML scenario. In practicality,
this scenario is preventable by ensuring that the network weights are encrypted and the design of the network is
not disclosed to unauthorized parties. The NeurlPS 2017 competition studied the converse scenario, black-box
attacks, where the adversary has no prior knowledge of the target network but may still have access to the
training data. Results of that competition showed that successful attacks could still be developed by attacking an
ensemble of plausible network designs.

A less-explored scenario is the grey-box attack where the adversary may have partial information. This could be
access to open-source data used to train the target network, or the ability to probe the target network by
analysing the outputs resulting from a given input. In Section 3.2, we discuss current JHU/APL research that
addresses the grey-box scenario of data poisoning attacks, where the attacker may manipulate a dataset by
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embedding a trigger pattern, or “Trojan” that evokes an undesired response from a network trained on that data.
Finally, in Section 3.3, we expand the notion of the grey-box attack to include the possibility of an adversary
having either access to or knowledge of one or more portions of the entire Al system development cycle. We
believe that studying AML at the systems level opens up the opportunity to achieve adversarial robustness
through the adoption of best practices for Al systems engineering.

3.0 CURRENT RESEARCH IN ADVERSARIAL VULNERABILITY

In this section, we highlight three ongoing areas of research at JHU/APL to address the gaps in AML research
discussed in the previous section. For each area, we discuss recent findings and their relevance to Al systems
that could plausibly be employed in a future hybrid warfare scenario.

3.1 Physical Adversarial Attacks on Imaging Systems

The ability to place an inconspicuous pattern on a person or vehicle to evade ubiquitous, Al-driven ISR (e.g.
pedestrian and/or vehicle tracking), would be a valuable capability for hybrid military operations. In [18] we
investigated the ability to design a semi-transparent adversarial patch that succeeds at attacking a deep network
when observed at a wide range of angles and scales. Some of our recent results are summarized in Figure 3. In
the left portion of the figure, the overt patch of [16] is contrasted with our semi-transparent patch designed to
induce the same effect (evoking a classification of “toaster”). We trained the patch using the expectation-over-
transformation (EoT) technique and included increasingly larger ranges of image rotations in the training set.
The right side of Figure 3 summarizes the performance of the patch when attacking an image classifier. The
attack success rate is plotted against the patch rotation angle, and the range of rotations included in the training
set is denoted by lines in different shades of blue. We found that increasing the range of training angles
maintained the consistency of attack success rate across those angles, but reduced the success rate overall. We
also found that the size of the patch had the greatest impact on the overall attack success rate. Therefore, we
believe that fundamental trade-off exists between overtness and effectiveness in patch attacks, even semi-
transparent ones. A physical patch attack that is equally effective in fooling a deep network when observed from
any viewpoint may require a patch of similar size or larger than the object it is placed on.

Effect of EOT Max Rotation on Patch i5cale = 0,250
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Figure 3. [Left] Comparing the original adversarial patch of [16] to a novel semi-transparent patch.
[Right] Attack success rate vs. rotation angle for semi-transparent patch attacks, with increasing
range of training rotations shown by darker shades of blue. Images originally published in [12].
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Another recent study [19] considered the effectiveness of patch attacks where patch was stationary, but the
position of the observer was variable. We trained adversarial patches using videos in which the target object was
observed from a variety of locations. Figure 4 illustrates a subset of the results, showing the effect of increasing
the range of training yaw angles to attack effectiveness. By increasing the range of angles included in the
training set (green shaded area), the peak attack success rate increases and the attack achieves consistent
effectiveness over a wider range of angles. However, we observed that performance falls off and reaches zero
around £60° regardless of how many angles were considered in training. These results further demonstrate the
limitations of adversarial patch attacks under real-world physical constraints.
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Figure 4. Performance results obtained with patches optimized over a range of yaw angles (shown in
the green shaded area).

Our research in physical patch attacks suggests that the effectiveness of static physical patches against visual Al
may be fundamentally limited by geometry. Furthermore, we must note that our studies have not fully
incorporated illumination constraints, particularly shadows incurred along the patch when rotated out-of-frame.
Therefore, we expect the real-world effectiveness of static patch attacks to be even more limited than what we

have published so far.

3.2 Data Poisoning in Third-Party Al Solutions

The landscape of deep learning software includes many open-source and third party options for developers. A
common practice is to initialize the weights of a deep network with a pre-trained model based on a benchmark
dataset obtained via web scraping, such as ImageNet [20]. The developer may then “fine-tune” the weights on
the data of interest. While this is an effective strategy for developing a quick Al solution to many problems, the
reliance on third-party models and datasets opens up the risk of backdoor or “Trojan” attacks. Trojan attacks
involve modifying a model so that it responds in certain way to a specific trigger in its input. In an image
classification model, the response to a trigger could be an erroneous class prediction [21]. In an autonomous
agent, the trigger could evoke a suboptimal or even self-destructive behaviour [22].
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Figure 5. [Left] example output of an object classifier on one frame of video data. [Centre] the result
after placing the trigger on a person. [Right] the result after placing a trigger on a different object.

Trojan attacks can be carried out on a deep learning model by manipulating its training data, adding new data to
the training set and re-training the model, or manipulating the weights directly. In [21], we developed a software
framework for inserting Trojans into deep networks by means of a trigger pattern. Figure 5 shows a notional
example of a Trojan programmed into an object classifier running on a video stream using our approach. In the
leftmost frame, it is clear that the classifier is able to detect and classify the chair and person correctly. This is
because the classifier’s training data include many labelled examples of chairs and people. In the centre frame,
the person is wearing a “bull’s eye” pattern that we added to the training data as a trigger. Note that in the centre
frame, the object classifier erroneously classifies the as a “teddy bear”. In the rightmost frame, the trigger is
located on the chair but the classifier still correctly classifies it. This is because we only added the trigger images
of people in the training set, re-labelled those images as “teddy bear,” and re-trained the classifier on the
modified dataset. Because they are so simple to implement, Trojan attacks are an asymmetric threat to
operational Al systems. While training a deep network can be very time consuming, embedding a Trojan takes
little effort. The example in Figure 5 only took a few hours for a developer to implement in a classifier that, aside
from the training data, was completely unknown. We believe this to be a credible threat to Al systems since
many datasets used to train or initialize deep networks are open-source or repurposed from other applications.

Not all trigger patterns need to be as overt as the “bull’s eye” shown in Figure 5. We also demonstrated that in-
distribution triggers, i.e. patterns that blend in more naturally with the data, could still produce effective Trojans
in simple problem-solving agents [22]. A similar behaviour was also observed in the literature, were successful
in-distribution Trojan attacks were demonstrated for affecting sentiment analysis in natural language processing
(NLP) [23]. Since accurate measurement of public sentiment may be useful in defending against hybrid military
operations, these results are somewhat concerning with Al becoming a common tool in the analysis of text
sources such as social media posts.

Ensuring that classifiers are free of Trojans is an active area of research that we are continuing to explore. Our
study in [21] demonstrated the efficacy of the Neural Cleanse [24] technique for detecting simple Trojans in
several datasets. However, the maximum accuracy we achieved was only slightly greater than 20%, so there
seems to be plenty of room for improvement. We believe that developing an effective approach to mitigating
Trojans in deep networks, and standardizing its use across potential end-users, will be critical for assuring the
operation of Al systems on the conventional or hybrid battlefield.

3.3 Adversarial Effects at the Al Systems Level

Nearly all of the AML literature pertains to attacks to a deep network in isolation. However, in operational Al
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systems, the ML model (which may not necessarily be a deep network) is one part of a larger algorithm or
software project that may be undergoing spiral development. Figure 6 depicts a flowchart describing the steps of
a notional Al algorithm in operations. The circular flowchart describes the ongoing cycle of developing an Al,
deploying it, and improving it with experience. The cycle begins with data management, the collection and
labelling of training examples such as images, video frames, speech recordings, or text documents. These data
are used to develop the actual algorithm, for which ML is only one part. After the raw data (e.g. imagery/video,
text/speech, biometrics, etc.) is acquired by the system, there may a pre-processing step in which the data is
“cleaned” to maximize the amount of desired signal. This may include techniques such as filtering, de-noising,
or normalization with respect to statistical biases. The pre-processed data is fed to a feature extraction step,
which produces the concise, numerical representations of the information to be exploited by the algorithm.
Features may be heuristic, statistical, or learned in the process of ML, as is the case with convolutional neural
networks. The features are then used by the ML model to perform classification, regression, or clustering. The
output of the ML model is then reported either to an explicit file, visualization, or an API allowing the algorithm
to interact with other parts of the system. When the performance of an algorithm is evaluated, it is usually in a
validation step immediately after training (usually on a held-aside subset of the training data). If performance is
acceptable, the algorithm is deployed to the field. The algorithm’s performance in the field is referred to as test
performance, and it may be analysed through blind experiments or anecdotal results. This information and
additional training data may be re-incorporated into the data management phase and the process can begin again
for another spiral of algorithm development.

Rather than focusing on the ML in isolation, we believe that assessing the risk of adversarial vulnerability in
operational Al systems should consider the ramifications of an attack on the end-to-end system. For building
systems robust to adversarial tampering, it is important to incorporate design practices that limit the ability of an
input perturbation to “survive” the remainder of the processing chain. For example, an adversarial patch attack
will be less effective if the pre-processing routines prior to ML are unknown to the attacker. Similarly, a system
may be more robust to Trojan attacks if rigorous test and evaluation catches them in the validation phase, or if
their effect is diluted by incorporating data from the algorithm’s deployment into the training set for future
spirals. Automating the entire development cycle is one goal of the emerging field of lifelong learning (L2),
which is exploring approaches to continual learning that adapt to changes in task definition and concept drift
[25]. By automating the entire Al development cycle, using L2 in deployed Al systems could potentially lead to
improved adversarial robustness at the systems level.
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Figure 6. The general Al development cycle (circular flowchart) and the steps of a typical algorithm
employing machine learning (large orange box).

An assessment of potential vulnerabilities to an operational Al system must also consider how adversarial
perturbations might exploit the inter-dependencies between system components. Much like how traditional D&D
tactics exploit the cognitive biases of human-in-the-loop ISR systems to maintain an information advantage,
effective systems-level AML would exploit an the biases built into the design of an Al system. For example,
adversarial perturbations made digitally or physically could be designed in signal subspaces where pre-
processing techniques are known to have minimal impact (e.g. within the passband of any signal filters).
Additionally, the use of multi-modal Al systems may be effective in mitigating the risk of an adversarial attack
on one mode to the overall system’s operation. For example, a Trojan causing misclassifications in a sentiment
classifier for social media posts may not be effective in a system that ultimately makes inferences from text
combined with images. Finally, assessing the vulnerabilities of an entire Al system may shed light on ways an
adversary could attain a “mission kill” without even using AML methods. For example, someone attacking a
multi-target tracking system (e.g. pedestrian tracking) may find it easier to disrupt the system’s track association
logic than the actual pedestrian detector by using less sophisticated methods than AML.

4.0 CONCLUSIONS

AML is still a nascent field of research in which the threat to current and future Al technologies is still being
studied. At JHU/APL, we have been focusing our attention to several knowledge gaps pertaining to AML’s
threat to conventional military systems as well as technologies that could be targeted in a hybrid operation. First,
we discussed physical patch attacks, which could target computer vision algorithms, such as vehicle or
pedestrian trackers. Our investigations into physical patch attacks have suggested that their threat to Al systems
under real-world viewing constraints may be fundamentally limited by geometry, but we aim to continue
investigating the effectiveness of patch attacks if they could be adapt to the viewing geometry. Next, we
discussed backdoor Trojan attacks, which could target computer vision, natural language processing, or
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reinforcement learning algorithms. The threat of Trojan attacks against ML models is highly asymmetric and
could pose a significant risk to systems that use third-party models and/or are trained on web-scraped data.
Therefore, we plan to continue investigating novel techniques for mitigating the effect of Trojans in deployed
ML models, or removing them entirely. Finally, we discussed the importance of taking a systems engineering
view of AML. Considering all of the potential vulnerabilities of an end-to-end Al system (of which ML is only
one part) suggests that many possible threat vectors exist with different likelihoods and resources required to be
effective. Therefore, we believe that establishing requirements for adversarial robustness in military and civilian
Al systems will be critical for assuring their performance in a future hybrid conflict.
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